久久久久琪琪去精品色,猛烈顶弄禁欲教官h,二狗的妖孽人生,欧美mv日韩mv国产网站

撥號18861759551

你的位置:首頁 > 技術文章 > 如何測量您的成像系統(tǒng)中的景深

技術文章

如何測量您的成像系統(tǒng)中的景深

技術文章

Gauging Depth of Field in Your Imaging System

Over the years, we have answered countless questions regarding lens performance. Of those questions, none have been more difficult to define than requests for depth of field. The reason for this difficulty has more to do with the vagueness of the question than with the inability to provide a measured or calculated value. Consider for a moment what depth of field ls us. It is the distance by which an object may be shifted before an unacceptable blur is produced. For depth of field to be properly stated, it should contain not only the displacement of an image, but also a specific resolution. The depth of field specification is further complicated by a type of keystoning aberration that often occurs. This result can dramatically affect linear measurements and therefore render depth of field unusable. In this article we will take a closer look at depth of field calculations and compare them to physical measurements using the DOF 1-40 depth of field gauge. The gauge, as we will see later, offers a unique look at what depth of field really means and how we as system designers may wish to quantify this parameter. A simple geometric approximation for depth of field is shown in Figure 1.0. The linear blur (required resolution) Bp, Bm and Bf can be expressed in terms of angular blur by the following equation.

Figure 1

 

Using similar triangles, a relationship can now be made between angular blur and the focus point,

where λ is the aperture of the lens. Solving for δplus and δmin,

The derivation above is very specific to the intended resolution. However, many theoretical derivations of depth of field often assume the lens resolution to be nearly diffraction limited. The most popular of these derivations are based on microscope applications. A typical example for the total depth of field (dplus + dmin) is shown below.

Where λ is the wavelength and NA equals the numerical aperture of the lens.

In order to study depth of field we have put together a simple macro system consisting of a 25mm fixed focal length lens, 8mm spacer and Sony XC-75 monochrome CCD video camera. The system was chosen not for its performance but rather for its common real world implementation. Measurements were performed using the DOF 1-40 target. The target allows us to measure depth of field at either 1, 10, 20 or 40 lp/mm over a maximum depth of 50mm. The flat field resolution of this system is approximay 15 lp/mm at 0.3X primary magnification. For purposes of our experiment, a blur spot resolution of 0.1 mm or 10 lp/mm was chosen. Depth of field measurements were taken at three aperture settings corresponding to f/2, f/4, and f/8. An important point should be noted about aperture settings. The f-number shown on most fixed focal length lenses is calculated with the object at infinity. As a result, we have adjusted our NA and therefore our aperture values for a 95mm working distance.

The values below highlight a number of points to consider. In general our calculated and measured delta d are fairly close. However, the displacement of the image due to defocus aberrations was not predicted by our calculations. This type of displacement error could certainly be problematic if the system contained an auto iris. If we compare our measured results to the delta-theory, we notice a significant variation. As we mentioned earlier, this variation is due to a false assumption concerning system resolution.

Another property that should be noted in our DOF 1-40 observations is the non-uniform magnification seen through the depth of field range. This is a very common problem in most lenses and, as we stated earlier, can yield significant errors if measurements are made throughout the full depth of field range. Edmund Optics provides several ecentric options to correct for this type of error.

In the end, it is the total performance of an optical system that counts. As a full service supplier and manufacturer of optics, illumination, CCD cameras, monitors, mounting, and electronic imaging related products, Edmund Optics has the knowledge and resources to look at your application as a total system. In fact, innovative tools such as the DOF 1-40 have come about from our own in-house need to quantify system performance. So if you are looking for individual components that can be integrated into your system or starting from scratch, our engineers are ready to help.

聯(lián)系我們

地址:江蘇省江陰市人民東路1091號1017室 傳真:0510-68836817 Email:sales@rympo.com
24小時在線客服,為您服務!

版權所有 © 2025 江陰韻翔光電技術有限公司 備案號:蘇ICP備16003332號-1 技術支持:化工儀器網(wǎng) 管理登陸 GoogleSitemap

在線咨詢
QQ客服
QQ:17041053
電話咨詢
0510-68836815
關注微信
黑人巨大粗物挺进了少妇| 女人露p毛视频·www| 女沟厕偷窥piss小便| 中文字幕丰满乱子伦无码专区 | 性欧美大战久久久久久久| 神马影院我不卡影院| 日韩a片无码毛片免费看小说| 国产chinasex对白videos麻豆| 丰满岳妇乱一区二区三区| 亚洲a∨无码一区二区三区| 18款禁用免费安装的软件app| 久久精品国产久精国产| 少妇bbbb| 色欲色av免费观看| 三人交free性欧美| 18禁裸乳无遮挡啪啪无码免费 | 国产又色又爽又高潮免费| 真人性囗交69视频| 亚洲人成影院在线无码按摩店| 玩弄chinese丰满人妻videos| 综合欧美五月丁香五月| 少妇人妻系列1~100| 精品欧美一区二区三区久久久| 无码欧精品亚洲日韩一区| 金梅瓶在线观看| 内射人妻无码色ab麻豆| 凹凸精品熟女在线观看| 亚洲精品久久久久中文字幕二区| 金梅瓶在线观看| 强壮公让我夜夜高潮a片视频| 狠狠色丁香婷婷久久综合麻豆| 青青河边草直播免费观看| 久久国产欧美国日产综合抖音| 两根硕大一起挤入小雪| 国产欧美精品区一区二区三区| 无人视频在线观看完整版高清 | 精品人妻无码一区二区三区| 人人妻人人爽人人做夜欢视频| 韩国演艺圈悲惨事件| 少妇被又大又粗又爽毛片欧美 | 国产精品毛片大码女人|